
TASH: Tcl Ada SHell, An Ada/Tcl Binding
©1996, Terry J. Westley

Calspan SRL Corporation

twestley@acm.org

Abstract
A binding to Tcl from Ada is described. The goal of
this binding is to make scripting language features,
such as associative arrays, regular expression
matching, and execution of OS commands available
to an Ada programmer and to allow a Tcl
programmer to use Ada in place of C where needed.
This binding exploits several new features of Ada 95
that make interfacing to C much cleaner and more
direct than Ada 83.

The Ada Programming Language
The Ada programming language is a wonderful
integration of traditional mainstream programming
language design and newer software engineering
features proven in more recent languages. The result
is a language with great expressive power, but also
with safety and reliability. New features added by
Ada 95 promise further improvements.

The Tcl Programming Language
Tcl (Tool Command Language) is a simple, but
powerful, scripting language invented by John
Ousterhout at University of California at Berkeley1.
It is so very different from Ada: interpreted, no data
typing, poor management of the name space, and
limited modularity. Obviously, this is because Tcl
was designed for a different purpose than was Ada.
But, Dr. Ousterhout designed Tcl with excellent
facilities for using C where appropriate. The
resulting environment combines the advantages of a
simple scripting language with the power of a
compiled systems language.

Programming Languages
When starting a programming task, it is important to
choose the right tools, especially the programming
language. Every language has its strengths and
weaknesses and these must be considered (among

1 Dr. Ousterhout is now at Sun Microsystems,
heading up a team which is developing PC and Mac
versions of Tcl/Tk as well as commercial tools for
supporting application development.

many other criteria) when making the choice. After
choosing a language for a particular task, one often
finds the need for features from another language.
For example, if a Tcl program grows from a small
script into a major program, the lack of good name
space management and complex data structures (such
as arrays of records) becomes a significant burden.
In a similar way, an Ada programmer may find uses
for associative arrays, regular expression matching
and execution of OS commands found in scripting
languages such as Tcl and Perl [5].

Ada/Tcl
With its embeddable library of functions, Tcl offers
the opportunity to ameliorate this dilemma, as long as
one uses C as the “host” language. But, is it possible
to use Ada in place of C? With the advent of Ada 95,
the task of writing a binding to C has proven to be
not only possible, but also very clean and direct.

The major objectives of this effort have been to
produce a binding which would:

• Allow a Tcl program to use Ada in place of C to
implement Tcl commands where additional
execution speed, more complex data structures, or
better name space management was needed, and

• Make the Tcl library functions available to an Ada
program. These include string and list handling,
regular expression matching, hash tables, and
access to the X window system (via Tk).

Introduction to Tcl
Tcl is:

Free: the source code is copyrighted by the Regents
of the University of California and Sun
Microsystems and is freely available (via
anonymous ftp) with few restrictions,

Interpreted: although compilers are available, the
code is more commonly interpreted,

General purpose: provides general programming
facilities such as variables, iteration, condition
evaluation, and procedures,

Extensible: the language can be easily extended in
Tcl as well as in C. One of the most popular

09/15/97 2

extensions is Tk, a toolkit for building graphical
user interfaces based on the X Window System,

Embeddable: its interpreter is implemented as a
library of C functions which can be incorporated
into and extended by a larger application.

Portable: beginning with Tcl7.5 and Tk4.1, the core
Tcl/Tk system is available for Macs and PCs as
well as for Unix.

Some of the advantages of using Tcl in an application
are:

Rapid development: Because of its extensibility and
availability of add-on packages, Tcl, along with
Tk, provide a higher level language than C.
Being an interpreted language also results in
quicker turn-around than the traditional edit-
compile-link-test cycle of software development.

System integration: Tcl makes an excellent
language for integrating several programs into
one single user environment. Because it is
embeddable, Tcl can also serve as an inter-
application language. Many also hope it to be
used in the future as an internetworking software
agent language.

User programming: Where appropriate, users can
program an application directly in the scripting
language. Many very successful applications,
such as AutoCad and Excel, provide user-level
programming through a custom language. With
Tcl, the application designer can provide for user
programming without having to design and
implement a new language.

Sample Tcl script
Figure 1 is a sample Tcl script. It reads standard
input and produces a frequency count, treating each
input line as a separate item. To count the frequency
of each word in a document in a Unix environment,
enter this command:

deroff -w file | freq

The deroff command replaces all word separators
in a file with line terminators. Its output is piped to
the input of the freq script. Word separation is not
done in the freq script to keep the script pure in its
purpose and implementation.

#!/usr/local/bin/tclsh

read lines from standard input until
end of file encountered
while {[gets stdin line] >= 0} {
 if [info exists Freq($line)] {
 # the item is already in the
array,
 # so just increment its count
 incr Freq($line)
 } else {
 # the item is not in the array
yet,
 # so initialize its count
 set Freq($line) 1
 }
}

iterate through every item and print
it
and its frequency count
foreach item [array names Freq] {
 puts stdout "$item $Freq($item)"
}

Figure 1

Notice the strong influence of C and scripting
languages, such as the Unix C shell, in the syntax of
Tcl. This program would not be very difficult to
program in Ada, although coding the associative
array Freq would prove to be somewhat verbose and
time-consuming.

Introduction to the Ada/Tcl binding
The binding presented in this paper is an Ada binding
to Tcl version 7.5a2. It is our intention to add a Tk
binding in the future. Other plans include
investigating the addition of other extensions, such as
TclX, and a general extension facility.

TASH is the name of the interactive shell provided
by this binding. It operates exactly as does the
tclsh program distributed with Tcl. The name
TASH is also used in this paper to refer to the
binding itself.

“Thin” binding
This binding attempts to provide a faithful interface
to the Tcl C library as represented in the Tcl header
file, “tcl.h.” One significant difference is that
many Tcl data structures are declared private in
the Ada version where they are not in C, although
this appears to be the intention of the original design.

Figure 2 is an example of this style. It shows the
interface, via pragma “import,” for creating a Tcl
interpreter.

09/15/97 3

type Interp_Rec is private;
type Interp_Ptr is access all
Interp_Rec;
function CreateInterp return Interp_Ptr;
pragma Import (C, CreateInterp,
 "Tcl_CreateInterp");

Figure 2

Every Tcl function is implemented with a pragma
Import interface. This will be referred to as the
“thin” binding because it uses the C data types in all
function arguments and return values.

“Thick” binding
The CreateInterp function of Figure 2 is used in an
Ada program as follows:

declare
 Interp : Tcl.Interp_Ptr;
begin
 Interp := Tcl.CreateInterp;
 ...
end;

This function may be used easily in conventional
Ada programming styles. Use of other functions,
such as Tcl.StringMatch, shown in Figure 3, might be
considered awkward by an Ada programmer2.

function StringMatch (
 Str : in C.Strings.Chars_Ptr;
 Pattern : in C.Strings.Chars_Ptr)
 return C.Int;
pragma Import (C, StringMatch,
 "Tcl_StringMatch");
-- Returns 1 if Str matches Pattern
using
-- glob-style rules for pattern
matching,
-- 0 otherwise.

Figure 3

This is because it requires the use of integer result
codes in place of Booleans and exception handlers
and does not work conveniently with the standard
Ada string type. This is demonstrated in the
following code which uses the StringMatch function
to check whether the string “tartar sauce” contains
the pattern “tar:”

2Throughout, assume Ada code examples are in the
context of: “with Interfaces.C” and “package C
renames Interfaces.C.”

declare
 Result_Code : C.Int;
begin
 Result_Code := Tcl.StringMatch (
 Str => New_String ("tartar
sauce"),
 Pattern => New_String ("tar"));
end;

To our dismay, however, we have a created a
problem greater than writing Ada in a verbose C
style: memory leakage. Without automatic garbage
collection (rare in Ada environments), the code
above may consume memory. One solution is to
declare the strings as accessible variables and free
them explicitly:

declare
 Str : Chars_Ptr := New_String (
 "tartar sauce");
 Pat : Chars_Ptr := New_String
("tar");
 Result_Code : C.Int;
begin
 Result_Code := Tcl.StringMatch (
 Str, Pat);
 Free (Str);
 Free (Pat);
end;

Any good programmer is far too lazy to write code in
this verbose manner! Our Ada/Tcl binding, through
the “magic” of overloading, provides a reasonable set
of additional subprograms for many of the primitive
operations. Figure 4 shows those of StringMatch.

function StringMatch (
 Str : in C.Strings.Chars_Ptr;
 Pattern : in C.Strings.Chars_Ptr)
 return Boolean;
function StringMatch (
 Str : in String;
 Pattern : in C.Strings.Chars_Ptr)
 return Boolean;
function StringMatch (
 Str : in C.Strings.Chars_Ptr;
 Pattern : in String) return Boolean;
function StringMatch (
 Str : in String;
 Pattern : in String) return Boolean;
-- Returns True if Str matches Pattern
-- using glob-style rules for pattern
-- matching, False otherwise.

Figure 4

The purpose of the additional subprograms is to
provide an interface which better reflects typical Ada
usage. This includes the use of exceptions, standard
Ada data types, procedure subprograms, default
parameter values, and appropriate return types.

For small strings, such as variable names and values,
the inefficiency of converting to a C string, then
releasing its space, is minimal. Where it is not, the
programmer has the choice to work in C strings
directly. The combinations in input parameter types

09/15/97 4

of standard Ada strings and C strings allows the
programmer freedom to choose what is needed for
each situation. Now, the search for “tar” can be
coded as follows:

if Tcl.StringMatch (
 "tartar sauce", "tar") then
 Text_IO.Put_Line ("tar found");
end if;

More Thoughts on the “Thin” vs.
“Thick” Binding
While building this interface, the author struggled for
quite some time between a pure C interface (often
called a “thin” binding) and a pure Ada interface
(“thick” binding).

The first version was a simple “thin” binding. The
resulting programming style was particularly
unsatisfying as is demonstrated in the pervious
section. More frustrating was the unavailability of
the string handling functions for “native” strings in
package Ada.Strings. The Interfaces.C package does
not provide a similar set of functions for handling C
strings.

The second version was a pure Ada interface, or
“thick” binding. All the pragmas to C were hidden in
the body of the package. The resulting programming
style was more pleasing and convenient. However,
the requirement to provide every feature of Tcl in a
pure Ada binding proved very daunting with little
apparent payback. For example, many Tcl
capabilities are implemented with callbacks. It is
essential that the subprogram called from Tcl have
the correct specification, including the use of C data
types.

At this point, other bindings, such as the POSIX Ada
binding and several Ada bindings to the X Window
System were reviewed for ideas. None of these
offered a satisfactory solution for Tcl.

Finally, a compromise was reached in which both the
“thin” and “thick” binding facilities were mixed in
one package. Splitting these into two separate
packages is feasible and may be desirable from a
binding maintenance viewpoint. However, this
makes the programmer’s task of finding, selecting,
and qualifying the needed features more difficult.
Also, some of the overloaded subprograms provide
mixtures of Ada and C data types. It is not clear
whether these should go into the “thin” or “thick”
layer as they have been defined here.

The string handling problem was resolved by writing
a string handling package for the
Interfaces.C.Strings.Chars_Ptr data type in the
pattern of Ada.Strings.Unbounded. Although this

package is not directly used in the Ada/Tcl binding, it
is included with the distribution.

Naming conventions
All names in the C interface which begin with “Tcl_”
were changed to remove this prefix. This was done
with the intention that the Ada programmer would
use fully qualified names, thus reducing the
redundancy of a call such as “Tcl.Tcl_CreateInterp”
to simply “Tcl.CreateInterp.”

Although case is not significant in Ada, all identifiers
are capitalized as in the C library to aid in reading
and recognizing corresponding identifiers.

In cases where a C name is an Ada reserved word,
the name was generally shortened, e.g.
TCL_RETURN became Tcl.RETRN.

Choosing subprogram variants
As mentioned before, many variants of the
subprograms were added to make the binding more
directly usable in an Ada program. These guidelines
were used in deciding where this was appropriate:

1) Add procedures where the original subprogram is
a function and the return value is actually a
completion code. This corresponds to common
usage in C where a function is used as a
procedure. In Ada, we can raise an exception
where an error occurs. All such procedures in
this binding raise the Tcl_Error exception when
an error return code is returned from the Tcl
function.

2) Replace C.Strings.Chars_Ptr input parameters with
standard Ada string type. Where reasonable,
also provide combinations of Chars_Ptr and
String. The implementation of such
subprograms takes care of converting String to
Chars_Ptr and freeing them after use to prevent
memory leaks.

3) Replace C.Strings.Chars_Ptr in function return
types with standard Ada string type and handle
all necessary conversions and memory
management.

4) Replace use of pointers in C functions with “out”,
“in out”, or “access” mode parameters where
appropriate.

5) Replace C.Int in function return types with
Boolean where appropriate.

6) Don’t replace C.Int in function return types where
an integer return value is appropriate. This
minimizes the combinations of subprogram

09/15/97 5

variants without great sacrifice of speed or
readability in the caller.

Client Data
The Tcl library uses a common technique for passing
private types to C functions:

typedef void *ClientData;

Unfortunately, the compiler can provide no
assistance in verifying consistent data type usage
across function calls which should operate on the
same data type.

This Ada/Tcl binding takes advantage of Ada
generics to provide type consistency. Use of a
tagged type with a common ancestor was rejected as
it seemed unnecessary and would have required
coupling of potentially very different data types.

To reduce the number of necessary instantiations,
related functions using the same data type are
collected in packages. The “man” pages in the Tcl
distribution were used as guidelines to determine
how to classify the ClientData functions. Figures 5
and 6 show an example of this: a subset of the C
function prototypes (macros are incomplete) and Ada
generic specification for hash table handling.

EXTERN void Tcl_InitHashTable
_ANSI_ARGS_((
 Tcl_HashTable *tablePtr, int
keyType));

EXTERN void Tcl_DeleteHashTable
_ANSI_ARGS_
 ((Tcl_HashTable *tablePtr));

#define Tcl_CreateHashEntry(\
 tablePtr, key, newPtr)

#define Tcl_GetHashValue(h)

#define Tcl_SetHashValue(h, value)

Figure 5

Variable-length Argument Lists
Variable-length argument lists are used in the Tcl
library primarily to pass one or more strings to be
made into a proper list or to construct a larger string.
Since all Tcl variables are stored as strings, it is not
necessary to pass lists of mixed data types as is
required to implement an interface to “printf.”

procedure InitHashTable (
 tablePtr : in HashTable_Ptr;
 keyType : in C.Int);
pragma Import (C, InitHashTable,
 "Tcl_InitHashTable");

procedure DeleteHashTable (
 tablePtr : in HashTable_Ptr);
pragma Import (C, DeleteHashTable,
 "Tcl_DeleteHashTable");

function CreateHashEntry (
 tablePtr : in HashTable_Ptr;
 Key : in C.Strings.Chars_Ptr;
 NewPtr : in C_Aux.Int_Ptr) return
 HashEntry_Ptr;
pragma Inline (CreateHashEntry);

function GetHashValue (
 EntryPtr : in HashEntry_Ptr) return
 ClientData_Ptr;
pragma Inline (GetHashValue);

procedure SetHashValue (
 EntryPtr : in HashEntry_Ptr;
 Value : in ClientData_Ptr);
pragma Inline (SetHashValue);

Figure 6

Thus, it was not considered necessary to implement a
general-purpose interface to C “varargs” as described
in [1] in order to pass arguments of different data
types. This capability is being considered as a future
addition, but for now, it appears to be adequate to
simply provide a function interface which may take
many arguments as shown in Figure 7. The body of
these subprograms adds a tenth string argument,
guaranteed to be a CS.Null_Ptr before calling the C
function. This allows the programmer to utilize all 9
of the String arguments.

09/15/97 6

package CS renames Interfaces.C.Strings;

procedure AppendResult (
 interp : in Interp_Ptr;
 String1 : in CS.Chars_Ptr;
 String2 : in CS.Chars_Ptr :=
CS.Null_Ptr;
 String3 : in CS.Chars_Ptr :=
CS.Null_Ptr;
 String4 : in CS.Chars_Ptr :=
CS.Null_Ptr;
 String5 : in CS.Chars_Ptr :=
CS.Null_Ptr;
 String6 : in CS.Chars_Ptr :=
CS.Null_Ptr;
 String7 : in CS.Chars_Ptr :=
CS.Null_Ptr;
 String8 : in CS.Chars_Ptr :=
CS.Null_Ptr;
 String9 : in CS.Chars_Ptr :=
CS.Null_Ptr);

Figure 7

Accessibility checks
In developing the TASH main program in the same
style as tclAppInit.c, accessibility check errors were
encountered using the Access attribute to reference
both variables and subprograms. Figure 8 shows the
C version of the Tcl shell main program.

int Tcl_AppInit(Tcl_Interp *interp);

int main(argc, argv)
 int argc;
 char **argv;
{
 Tcl_Main(argc, argv, Tcl_AppInit);
 return 0;
}

Figure 8

When attempting to duplicate the C model in Ada,
the code in Figure 9 was produced. However, both
uses of the Access attribute in the call to Tcl.Main
cause accessibility errors because both Argv and
AppInit are declared at a deeper accessibility level
than are C.Int and Tcl.AppInitProc_Ptr.

procedure tash is

 Argc : C.Int := C.Int (
 Ada.Command_Line.Argument_Count) +
1;
 Argv : C_Aux.Arg_Vector(1..Argc);

 function AppInit (
 Interp : in Tcl.Interp_Ptr)
 return C.Int;

begin -- tash
 C_Aux.Get_Argv (Argv);
 Tcl.Main (Argc,
 Argv(Argv'first)'access,
 AppInit'access);
end tash;

Figure 9

Knowing that Argv will not go out of scope before
completion of its use in Tcl.Main allows us to change
the Access attribute referencing it to
Unchecked_Access. Unfortunately, no equivalent to
Unchecked_Access is available for subprogram
references. Since Tcl.AppInitProc_Ptr is declared at
library level, so must AppInit. Thus, the package
TashApp was created to declare AppInit and so this
package and the main program, TASH, together
make up the Ada version of tclAppInit.c. This is
shown in Figure 10.

Callbacks
Tcl uses callbacks extensively. These are defined as
pointer to function typedefs in the C Tcl public
interface (tcl.h), for example:

typedef int (Tcl_AppInitProc)
 _ANSI_ARGS_((Tcl_Interp *interp));

This example defines the interface to a function, to
be provided by the user, which performs the
application-specific initialization.

09/15/97 7

package TashApp is
 function Init (
 Interp : in Tcl.Interp_Ptr)
 return C.Int;
 pragma Convention (C, Init);
end TashApp;

--
-

with TashApp;

procedure tash is

 Argc : C.Int := C.Int (
 Ada.Command_Line.Argument_Count) +
1;
 Argv : C_Aux.Arg_Vector(1..Argc);

begin -- tash
 C_Aux.Get_Argv (Argv);
 Tcl.Main (Argc,
 Argv(Argv'first)'unchecked_access,
 TashApp.Init'access);
end tash;

Figure 10

This design has been faithfully duplicated in the Ada
binding by the use of the Ada 95 access to
subprogram capability:

type AppInitProc_Ptr is access
function (
 Interp : in Interp_Ptr) return
C.Int;
pragma Convention (C,
AppInitProc_Ptr);

The Ada subprogram used to initialize the TASH Tcl
interpreter for this situation is shown in Figure 11.

function Init (Interp : in
Tcl.Interp_Ptr)
 return C.Int is

begin -- Init

 if Tcl.Init(interp) = Tcl.ERROR then
 return Tcl.ERROR;
 end if;

 Tcl.SetVar(interp, "tcl_rcFileName",
 "~/.tashrc", Tcl.GLOBAL_ONLY);
 return Tcl.OK;

end Init;

Figure 11

This actual subprogram would be passed to a Tcl
function as follows:

Tcl.Main (Argc,
 Argv(Argv'first)'unchecked_access,
 Init'access);

TWASH: Tcl Windowing Ada SHell
TWASH is a version of the TASH program which
adds the Tk extension. Although it does not provide
an Ada binding to Tk, it does allow a Tcl/Tk
procedure to be written in Ada. Future plans for this
Tcl/Tk binding include providing the capability to
use Tk directly from Ada code, similar to the way the
freq program of Appendix B uses Tcl.

Colorado Adatcl
The University of Colorado’s Arcadia project [3] has
implemented Adatcl [4], an Ada binding to Tcl.
Adatcl predates TASH, but has had little influence
other than to motivate work on a more complete
binding. This section describes the differences
between Adatcl and TASH.

Adatcl provides a mutex feature which serializes calls
to the Tcl C library. TASH does not. It is clear that
this will be necessary if Tcl calls will be made from
multiple tasks. This might be especially useful in a
situation where multiple Tcl interpreters are needed.
This capability has been postponed for a future
enhancement.

TASH was built from the ground up for Ada 95 and
is not based on an earlier Ada 83 version. It should
be more portable than Adatcl because it takes better
advantage of new features in Ada 95. See the section
on Ada 95 features used in this binding for specifics.

TASH is a more complete implementation. It
includes all public Tcl C functions declared in
tcl.h and is based on the latest tcl7.5a2 version.

TASH uses generics to implement ClientData so that
an Ada programmer need not use the address
attribute or unchecked conversion to manipulate data
in hash tables et. al. See the Client Data section for
more details.

TASH provides both a “thin” C-style binding as well
as an Ada programmer-friendly “thick” binding.

Tasking not used
The Colorado Adatcl uses a mutex semaphore to
serialize Ada calls to C functions. This prevents
potential problems which may occur as a result of
interrupting calls to malloc.

The TASH binding does nothing special to protect
calls to C functions. This may be a problem when
the binding is called from more than one task. A

09/15/97 8

future release will use protected types to address this
issue.

Ada 95 features used
Most obvious among the Ada 95 features used was
the Interfaces.C family of packages. These packages
provide C-compatible data types for int, char *, and
many others.

Pragma Import provides the capability to call a non-
Ada subprogram while assuring compatible argument
passing conventions and exerting control over the
external name and the link name. This was used to
interface to all functions in the Tcl library.

Pragma Convention was used to implement function
pointer typedefs as subprogram access types for
callbacks from C to Ada. It was also used to assure
compatible record and array layout.

Access to subprograms was used for implementing
function pointer typedefs.

Access to named objects was used for passing
arguments to C functions which require pointers to
named objects.

Altogether, the availability of these features in Ada
95 promise to make this binding more portable than
one done in Ada 83.

No object-oriented features were used since Tcl is not
an object-oriented system.

Testing
Comprehensive testing of this binding has not yet
been completed.

All examples in [2], chapters 30 through 32.2 have
been implemented in package TestApp (included in
the TASH software distribution) and successfully
tested. This includes eq, concat, list, sum, and expr
commands and an object-oriented counter.

The test scripts in the Tcl distribution were executed
successfully except those which require the
additional implementation of the commands in
tclTest.c.

Future testing plans include implementation of an
Ada version of tclTest.c, completion of all examples
in [2] as well as testing of all other functions in the
binding not already covered.

Sample programs
One goal of TASH is to allow Ada to be used in
place of C to implement Tcl commands. Appendix A
contains a complete example extracted from the test

software included with the TASH distribution. This
program implements one Tcl command in Ada: the
eq command defined in [2], section 30.2.

The second goal of TASH is to make the Tcl library
functions available for use in Ada programs in which
use of Tcl as a scripting language is not necessarily a
requirement but where such features as string and list
handling, regular expression matching, and hash
tables is needed. Appendix B contains a complete
Ada program which implements the freq script of
Figure 1 by using Tcl library functions.

How to get and install TASH
Get TASH via anonymous ftp from
ocsystems.com. It is the file,
tash1.1b1.tar.gz in the directory,
/xada/tash.

Uncompress and extract it from the tar archive:

gzcat tash1.1b1.tar.gz | tar xvf -

Then, follow these steps to build and test it:

1. Modify the file, “Makefile.common” in the
tash1.1b1 directory to reference the correct
location of your local Tcl C library, libtcl.a.

2. Type “make” in the tash1.1b1 directory.
This executes a make in each of three
subdirectories to build the Ada/Tcl interface, the
Tcl Ada Shell program, tash, the freq demo
program, and a test program.

3. Test that the system was correctly built by
changing to the tash1.1b1/test directory
and executing “make test.”

4. Try the freq demo by executing “make
test” in the tash1.1b1/demos directory.
To compare the execution time of Tcl versus
Ada freq, execute “make time.”

Future plans
Plans for the immediate future are to:

• finish implementation of Tcl command procedure
examples from [2].

• implement Ada version of tclTest.c. This
program is included with the Tcl distribution; it
contains extra Tcl command procedures for
testing Tcl's C interfaces.

• perform comprehensive testing of all subprograms
in Ada/Tcl interface package.

Additional plans include preparation of Ada
interfaces for the Tk and TclX extensions and usage

09/15/97 9

of protected types to access multiple interpreters and
serialize calls to C code.

References
1. Gart, M., Interfacing Ada to C – Solutions to

Four Problems, TriAda ‘95 Proceedings, ACM
Press, New York, N.Y., 1995.

2. Ousterhout, J., Tcl and the Tk Toolkit, Addison-
Wesley, Reading, Mass, 1994.

3. Arcadia Project, University of Colorado,
http://www.cs.colorado.edu/homes/arcadia/
public_html/.

4. Adatcl7.3, Arcadia Project, University of
Colorado, http://www.cs.colorado.edu/~arcadia/
Software/adatcl.html.

5. Wall, Larry and Schwartz, Randy L.,
Programming Perl, O’Reilly & Associates,
Sebastopol, CA, 1991.

09/15/97 10

Appendix A
The following code defines a full Tcl application
which contains one new Tcl command, “eq.” The
package, TestApp, contains the Ada code of the new
Tcl command as well as the required application-
specific Tcl initialization function, Init.

with Interfaces.C;
with Tcl;

package TestApp is

 package C renames Interfaces.C;

 function Init (
 Interp : in Tcl.Interp_Ptr)
 return C.Int;
 pragma Convention (C, Init);

end TestApp;

--

with Ada.Strings.Fixed;
with C_Aux;
with Text_IO;
with Unchecked_Deallocation;

package body TestApp is

 function "+" (Left, Right : in C.Int)
 return C.Int renames C."+";
 function "=" (Left, Right : in C.Int)
 return Boolean renames C."=";
 function "=" (
 Left, Right : in
C.Strings.Chars_Ptr)
 return Boolean renames C_Aux."=";

 package CreateCommands is new
 Tcl.Generic_CreateCommands
(Integer);

 function EqCmd (
 ClientData : in Integer;
 Interp : in Tcl.Interp_Ptr;
 Argc : in C.Int;
 Argv : in
C_Aux.Chars_Ptr_Ptr)
 return C.Int is

 -- Compares two arguments for
equality
 -- using string comparision.
 -- Returns 1 if equal, 0 if not.

 Vector : C_Aux.Arg_Vector
(1..Argc);
 begin -- EqCmd
 if Argc /= 3 then
 Tcl.SetResult (
 Interp, "wrong # args");
 return Tcl.ERROR;
 end if;
 Vector := C_Aux.Argv.Value (
 Argv, C.Ptrdiff_t(Argc));
 if Vector(Vector'first+1) =

 Vector(Vector'first+2)) then
 Tcl.SetResult (Interp, "1");
 else
 Tcl.SetResult (Interp, "0");
 end if;
 return Tcl.OK;
 end EqCmd;
 pragma Convention (C, EqCmd);

 function Init (
 Interp : in Tcl.Interp_Ptr)
 return C.Int is
 begin -- Init
 if Tcl.Init(interp) = Tcl.ERROR
then
 return Tcl.ERROR;
 end if;
 CreateCommands.CreateCommand (
 interp, "eq", EqCmd'access,
 0, NULL);
 Tcl.SetVar(interp,
"tcl_rcFileName",
 "~/.tashrc", Tcl.GLOBAL_ONLY);
 return Tcl.OK;
 end Init;

end TestApp;

--

with Ada.Command_Line;
with C_Aux;
with Interfaces.C.Strings;
with Tcl;
with TestApp;

procedure TaShTest is -- Tcl Ada SHell
Test

 package C renames Interfaces.C;

 function "+" (Left, Right : in C.Int)
 return C.Int renames C."+";

 Argc : C.Int := C.Int (
 Ada.Command_Line.Argument_Count) +
1;
 Argv : C_Aux.Arg_Vector(1..Argc);

begin -- TaShTest

 -- Get command-line arguments and put
 -- them into C-style "argv," as
required
 -- by Tcl.Main.
 C_Aux.Get_Argv (Argv);

 -- Start Tcl
 Tcl.Main (Argc,
 Argv(Argv'first)'unchecked_access,
 TestApp.Init'access);

end TaShTest;

09/15/97 11

Appendix B
The following code is a complete Ada program
which implements the freq script of Figure 1 by
using Tcl library functions. In this case, there is no
need to create a Tcl interpreter since none of the Tcl
library functions used require it. The Ada version is
approximately 75 lines of code while the Tcl version
is 10. The extra effort of recoding into Ada yields a
10 to 1 improvement in speed using GNAT 2.07 on a
Sun Sparc2 with SunOS 4.1.3.

with C_Aux;
with Interfaces.C.Strings;
with Tcl;
with Text_IO;

procedure Freq is -- Frequency counter

 package C renames Interfaces.C;

 function "=" (Left, Right : in
 Tcl.Integer_Hash.HashEntry_Ptr)
 return Boolean renames
 Tcl.Integer_Hash."=";
 function "=" (Left, Right : in C.Int)
 return Boolean renames C."=";

 Line : C.Strings.Chars_Ptr;
 Freq_Count : Integer;
 Item : C.Strings.Chars_Ptr;
 Freq_Hash : aliased
 Tcl.Integer_Hash.HashTable_Rec;
 Entry_Ptr :
 Tcl.Integer_Hash.HashEntry_Ptr;
 Is_New_Entry : aliased C.Int;
 Search : aliased
 Tcl.Integer_Hash.HashSearch_Rec;

 procedure Get_Line (
 Line : in out C.Strings.Chars_Ptr)
is
 -- This procedure gets a line from
 -- standard input and converts it to
a
 -- "C" string.
 Input_Line : String (1..1024);
 Length : Natural;
 begin -- Get_Line
 Text_IO.Get_Line (
 Input_Line, Length);
 C.Strings.Free (Line);
 Line := C.Strings.New_String (
 Input_Line (1..Length));
 end Get_Line;

begin -- Freq

 -- create a hash table for holding
 -- frequency counts
 Tcl.Integer_Hash.InitHashTable (
 Freq_Hash'unchecked_access,
 Tcl.STRING_KEYS);

 -- read lines from standard input
until
 -- end of file encountered
 while not Text_IO.End_of_File loop

 Get_Line (Line);
 -- create (or find, if already
 -- created) an entry for this line
 Entry_Ptr :=

Tcl.Integer_Hash.CreateHashEntry (
 Freq_Hash'unchecked_access,
 Line,

Is_New_Entry'unchecked_access);
 if Is_New_Entry = 1 then
 Freq_Count := 1;
 else
 -- get the frequency count from
 -- the hash
 Freq_Count :=

Tcl.Integer_Hash.GetHashValue (
 Entry_Ptr) + 1;
 end if;
 -- Store the updated frequency
count
 -- in the table.
 -- WARNING: We take advantage of
the
 -- fact that an integer is the
same
 -- size as a C pointer and store
the
 -- count in the table, rather than
a
 -- pointer to it.
 Tcl.Integer_Hash.SetHashValue (
 Entry_Ptr, Freq_Count);
 end loop;

 -- iterate through every item and
print
 -- it and its frequency count
 Entry_Ptr :=
 Tcl.Integer_Hash.FirstHashEntry (
 Freq_Hash'unchecked_access,
 Search'unchecked_access);
 while Entry_Ptr /= Null loop
 Freq_Count :=
 Tcl.Integer_Hash.GetHashValue (
 Entry_Ptr);
 Item :=
Tcl.Integer_Hash.GetHashKey (
 Freq_Hash'unchecked_access,
 Entry_Ptr);
 Text_IO.Put_Line (C_Aux.Value
(Item)
 & Integer'image (Freq_Count));
 Entry_Ptr :=
 Tcl.Integer_Hash.NextHashEntry
(
 Search'unchecked_access);
 end loop;

 -- delete the frequency counter
 -- hash table
 Tcl.Integer_Hash.DeleteHashTable (
 Freq_Hash'unchecked_access);

end Freq;

