
TASH: A Free Platform-Independent
Graphical User Interface Development Toolkit for Ada

 1996 ACM. Published in 1996 TRI-Ada ’96 Conference Proceedings

Terry J. Westley

Calspan SRL Corporation

twestley@acm.org

Abstract
A platform-independent Application Programming Interface
(API) for developing Graphical User Interfaces (GUI) is
described. This API includes a complete “thin” binding to Tcl
and an experimental “thick” binding to Tk from Ada 95. Several
features of Ada 95 such as access to subprograms, tagged types,
and interface to C were used in this binding.

What is a PIGUI?
A Platform-Independent Graphical User Interface (PIGUI) toolkit
is a

software library that a programmer uses to produce GUI
code for multiple computer systems. The toolkit
presents functions and/or objects (along with a
programming approach) which is independent of which
GUI the programmer is targeting... Native look-and-feel
is a desirable feature, but is not essential for PIGUIs. [4]

Examples of PIGUIs
Some PIGUIs currently available for Ada are Screen Machine
from Objective Interface Systems (info@ois.com) and OpenUI
from Open Software Associates (http://www.osa.com.au).

Perhaps the “hottest” PIGUI being discussed today among
Internet programmers is the Java AWT (Abstract Window
Toolkit) from Sun Microsystems (http://java.sun.com).

Introduction to TASH
TASH [8] is a binding to Tcl/Tk [6] from Ada (requires Ada 95).
This binding allows a Tcl/Tk program to use Ada in place of C to
implement Tcl command procedures. This may be done to
increase execution speed, use complex data structures not
available in Tcl, and to otherwise use capabilities of Ada not
found in Tcl. It also makes the Tcl/Tk library functions available
to an Ada program. These include string and list handling,
regular expression matching, hash tables, and (most important for
this discussion) access to a graphical user interface toolkit.

The binding to Tcl is a complete, thin1 binding to Tcl version
7.5a2. Work is progressing on upgrading it to version 7.5.
Thicker binding support is provided by using Ada data types and
exceptions for error handling in overloaded subprograms.

The binding to Tk is an experimental thick binding to Tk version
4.1a2. This paper describes a sample Tk program and discuses
some of the rationale for decisions made in designing this
binding.

Introduction to Tcl/Tk
Tcl/Tk is [8]:

Free: the source code is copyrighted by the Regents of the
University of California and Sun Microsystems and is freely
available (via anonymous ftp) with few restrictions,

Interpreted: although experimental compilers are available (and
the Tcl/Tk development group at Sun plans to build one), the
code is more commonly interpreted,

General purpose: provides general programming facilities such
as variables, iteration, condition evaluation, and procedures,

Extensible: the language can be easily extended in Tcl as well as
in C. One of the most popular extensions is Tk, a toolkit for
building graphical user interfaces based on the X Window
System, Microsoft Windows, and Macintosh,

Embeddable: its interpreter is implemented as a library of C
functions which can be incorporated into and extended by a
larger application.

Portable: beginning with Tcl7.5 and Tk4.1, the core Tcl/Tk
system is available for Macs and PCs as well as for Unix.

Some of the advantages of using Tcl in an application are:

Rapid development: Because of its extensibility and availability
of add-on packages, Tcl, along with Tk, provide a higher level
language than C. Being an interpreted language also results in
quicker turn-around than the traditional edit-compile-link-test
cycle of software development.

System integration: Tcl makes an excellent language for
integrating several programs into one single user environment.
Because it is embeddable, Tcl can also serve as an inter-
application language. Many also hope it to be used in the
future as an internetworking software agent language.

1A “thin” binding attempts to faithfully provide a one-to-one
mapping to each data type, function call, and object in the target
system.

User programming: Where appropriate, users can program an
application directly in the scripting language. Many very
successful applications, such as AutoCad and Excel, provide
user-level programming through a custom language. With Tcl,
the application designer can provide for user programming
without having to design and implement a new language.

Platforms
With introduction of Tcl 7.5 and Tk 4.1, Tcl/Tk is available for
Macintosh and PC platforms in addition to Unix [7]. Source code
can be downloaded for many platforms. Binary programs and
libraries are also available for Macs and PCs.

The TASH binding has been built with the freely available GNU
New York University Ada Translator (GNAT) [5]. This system is
available for several Unix variants and PCs running Windows 3.1
and Windows 95. It is also available for the MachTen operating
system on Macs.

TASH itself is distributed as source code so that it may be built in
any system that supports both Tcl/Tk and GNAT. See Appendix
A for instructions for downloading and building TASH.

Sample Tcl/Tk program
Figure 1 shows the window created when a sample Tcl/Tk
program, timer, is executed. This program was adapted from
the timer program included with the Tk distribution. It
implements a simple stop watch which has the ability to start,
stop, and reset a timer.

Figure 1

Figures 2 through 8 contain the source code of the timer program.
The complete Tcl program is obtained by concatenating the code
in these figures. This program is available in its entirety via
anonymous ftp. See Appendx A for instructions for downloading
it.

The Tcl version of the timer program is explained in this section
and is contrasted with the Ada version in a later section. It is
comprised of five procedure declarations and several other
statements.

Figure 2 has nothing to do with the Tk binding. It shows a Unix
technique for making a script executable and is required if we
want to use this Tcl script as a stand-alone executable program.
The permissions on the file containing this script must be set to
executable for this technique to work.

Figures 3 through 7 contain the declaration of five procedures,
Update, tick, Start, Reset, and Stop. These define
new Tcl command procedures which extend the Tcl language to
implement the primitives of this application.

#!/usr/local/bin/wish -f

Figure 2

Figure 3 declares a procedure which updates the timer window
with the current value of the timer. When the timer script is
executed, several subwindows are created within the main Tk
window (these are shown in Figure 1). One of these windows,
the .counter window, displays the current value of the timer.
The Update procedure writes the current value of the timer into
this window.

Update the window by displaying the
current value of the timer.
proc Update {} {
 global seconds hundredths
 .counter config -text [format \
 "%d.%02d" $seconds $hundredths]
}

Figure 3

The tick procedure is shown in Figure 4. This procedure
increments the timer’s value and displays it. It uses the after
command to schedule itself to run again in the future to keep the
timer running. The timer is stopped by setting the global
variable, stopped, to 1 (Tcl value for True). When the tick
procedure finds the stopped variable to be true, it does not
schedule itself to run again.

Increment the timer by one “tick.”
A tick is 50 milliseconds (or 5 hundredths
of a second).
proc tick {} {
 global seconds hundredths stopped
 # If the timer is stopped, do not
 # increment its value.
 if $stopped return
 # Schedule tick to be called again in
 # 50 milliseconds.
 after 50 tick
 # Increment the timer value.
 set hundredths [expr $hundredths+5]
 if {$hundredths >= 100} {
 set hundredths 0
 set seconds [expr $seconds+1]
 }
 # Update the timer display
 Update
}

Figure 4

The timer is started running by the Start procedure shown in
Figure 5. It is only started if it is currently stopped. This
prevents tick from being called again and starting a duplicate
set of timer increments. Nothing is assumed about the value of
the timer. It could have been reset to zero by the user, but this is
not necessary for proper operation of the timer. If it was not reset
to zero, it continues incrementing from the last value.

The Reset button shown in Figure 1 also serves as a Stop
button. While the timer is stopped, it is labeled Reset. When
the Start button is pressed, the Start procedure relabels the
Reset button to be a Stop button.

Start the timer if it is currently
stopped.
Also, change the Stop button (currently
labeled “Reset”) to display “Stop.”
proc Start {} {
 global stopped
 if $stopped {
 set stopped 0
 .stop config -text Stop -command Stop
 tick
 }
}

Figure 5

Figure 6 shows the Reset procedure which simply sets the value
of the timer to 0.0 seconds and updates the display. It also
initializes the global variable, stopped, so that it is in the
correct state when the Start button is pressed, invoking the
Start procedure.

Reset the timer’s value to 0.0 and update
the display.
proc Reset {} {
 global seconds hundredths stopped
 set seconds 0
 set hundredths 0
 set stopped 1
 Update
}

Figure 6

The Stop procedure of Figure 7 is responsible for setting the
global variable, stopped, to stop the timer. Once set to 1, this
variable will cause the tick procedure to not reschedule itself to
increment the timer value.

Once the timer is stopped, we have no need for a Stop button.
So, it is relabeled and its command is modified to function as the
Reset button.

Stop incrementing the timer. Also,
relabel
the Stop button to be a Reset button.
proc Stop {} {
 global stopped
 set stopped 1
 .stop config -text Reset -command Reset
}

Figure 7

The first code which executes in the timer script is shown in
Figure 8. There are three widgets2 created and displayed by this
program. This code creates and maps these widgets to the
window.

The label command creates the text window in which the
current timer value is displayed. The name of the label widget is
.counter. It is initialized to the string “0.00” with a raised
relief appearance.

2The X Window System uses the term “widget” to denote a
displayed component which can be independently created and
controlled. The user interface is made up of many widgets.

The pack command causes the specified widget to be mapped
onto the display in a particular orientation with respect to the
parent window and previously mapped widgets. In this example,
the label widget is the first to be mapped and is positioned at the
bottom of the parent window.

label .counter -text 0.00 -relief raised \
 -width 10
pack .counter -side bottom -fill both

button .start -text Start -command Start
pack .start -side left -fill both \
 -expand yes

button .stop -text Reset -command Reset
pack .stop -side left -fill both \
 -expand yes

bind . <Control-c> {destroy .;exit}
bind . <Control-q> {destroy .;exit}

Reset

Figure 8

The two remaining widgets are buttons created to start, stop, and
reset the timer. The Start button, created by the button
.start command, executes the Start procedure whenever it is
activated (by clicking the mouse over the button). If the timer is
currently stopped, the Start procedure reprograms the other
button to be a Stop button, then starts the timer.

The Stop button is created by the button .stop command.
This button serves also as a reset button. When it is first created,
it appears and acts as a Reset button. Later, it is converted to a
Stop button in the Start procedure. When activated, this
button calls either the Reset or Stop procedure depending on
the current state of the timer.

The two bind commands associate handlers with key press
events. When the key is pressed, the handler destroys the window
and exits the program.

Reset is a call to the Reset procedure. It merely resets the
counter and updates the timer value on the screen.

When the wish program reading this script encounters the end of
file, it enters the Tk main event loop. Thereafter, all processing is
initiated by event handlers until the program exits.

Time keeping is accomplished in the tick procedure by
updating the seconds and hundredths counters, updating the
label widget, and rescheduling the tick procedure to run again
in 50 milliseconds.

This example gives a glimpse of the form and syntax of Tcl code
and a flavor for the event handling nature of Tk. It also
demonstrates how much can be accomplished in building a GUI
application with very little code. This full application requires
fewer lines of code than some graphical “hello world” programs.3

3See the Louisiana Tech ACM “Hello World” project at
http://www.latech.edu/~acm/HelloWorld.shtml. Note especially
the Visual C++ entry.

An Ada Version of Timer
Figures 10 through 20 contain the source code of the Ada version
of the timer program. When the code in each of these figures is
concatenated, it makes up the complete Ada program. It’s
function and purpose is identical to that of the Tcl/Tk version
shown in figures 2 through 8. Its appearance on the screen is
indistinguishable from the Tcl/Tk version (Figure 1).

Before examining the Ada code in detail, let us first consider the
overall pattern of a program which uses the Tcl/Tk library.
Figure 9 is adapted from Figure 28.1 of [6].

Create Interpreter

Create New Commands

Initialize Tcl and Tk

Tcl Interpreter

Utilities Utilities

Tcl Library Ada Program

Initiate Tk Event Loop

Built-in
Commands

Application-
Specific
Commands

Figure 9

The Tcl Library consists of a Tcl script code interpreter and many
built-in commands and utility procedures. The Tcl distribution
includes procedures implemented in C as well as many
implemented in Tcl.

A programmer may extend the Tcl script language by
implementing new Tcl commands in C or in Tcl script code.
Figures 3-7 show examples of procedures written in Tcl script
code. These procedures are called, parsed, and executed by the
Tcl interpreter exactly as any built-in command.

Application-specific commands may be implemented in C by
adhering to a specific function prototype and return code
convention. A new command is then created by registering the
function with the Tcl intepreter.

Clearly, there are many advantages to implementing a new Tcl
command in C. These include increased speed of execution and
the capability to use complex data structures not available in Tcl.

In addition to the components of the Tcl Library, Figure 9 shows
those of the application program. It first creates a Tcl interpreter,
initializes Tcl and Tk, declares and registers new Tcl commands,
then calls the Tk main event loop. The remainder of this section
focuses on these components and how they can be implemented
in Ada with TASH.

Figure 10 shows code required for the Ada version which has no
equivalent function in the Tcl/Tk version. This code is not only
necessary in the Ada version, but serves the purpose of readability
and reliability for which Ada is well known.

For example, there is no need for with context clauses in Tcl.
Consequently, the Tcl programmer has a more difficult time than
the Ada programmer identifying which packages are used in a

given program and in which package a given procedure is
declared.

with C_Aux;
with Interfaces.C.Strings;
with Text_IO;
with Tcl;
with Tk;

procedure Timer is -- Timer

 package C renames Interfaces.C;

 package CreateCommands is new
 Tcl.Generic_CreateCommands (Integer);
 package Int_IO is new
 Text_IO.Integer_IO (Integer);

 Interp : Tcl.Interp_Ptr;
 Result : C.Int;
 Counter : Tk.Label;
 Start_Button : Tk.Button;
 Stop_Button : Tk.Button;
 Seconds : Natural := 0;
 Hundredths : Natural := 0;
 Stopped : Boolean := True;

Figure 10

The instantiation of the generic package
Tcl.Generic_CreateCommands provides the ability to
create Tcl commands in Ada. Each of the created commands
allows for the introduction of client data upon which the
command can operate. In the timer example, no client data is
needed, but since a client data type is a required part of the
interface, Integer is used as a place holder for the client data.

Several variables are also declared. These include access to the
Tcl interpreter, a result code for calling Tcl functions, screen
widgets, and the Seconds, Hundredths, and Stopped
variables.

The use of strong typing is credited with improving the reliability
and correctness of a program since many program defects are
discovered at compile-time rather than run-time.

Strong type may not be so critical in such a small application as
this timer program. But, it does illustrate the benefits of using
Ada variables over the use of Tcl variables to attain the strong
typing benefits. A much larger application coded in Ada would
greatly benefit from avoiding easy and innocent misuse of Tcl
variables. All Tcl variables are strings and so can be easily
misused.

Figures 11 through 17 contain the declaration of procedures
which correspond to the Tcl procedures shown in Figures 3
through 7. The Update procedure of Figure 11 updates the
Counter widget (a Label widget) with the current value of the
timer. Notice that the reliability of the Ada version is higher than
the Tcl/Tk because the Seconds and Hundredths variables
are typed and cannot contain non-integer data.

 -- Update the window by displaying the
 -- current value of the timer.
 procedure Update is
 Hundredths_Image : String (1..2);
 begin -- Update
 Int_IO.Put (Hundredths_Image,
Hundredths);
 Tk.Configure (Counter, "-text " &
 Natural'image (seconds) & "." &

 Hundredths_Image);
 end Update;

Figure 11

The Tick procedure shown in Figure 12 increments the timer,
then displays its value by calling the Update procedure. We
chose to use Ada variables for Seconds, Hundredths, and
Stopped because there was no advantage to using Tcl variables
and there are significant reliability and efficiency advantages to
using Ada variables.

 -- Increment the timer by one "tick."
 -- A tick is 50 milliseconds (or 5
hundredths
 -- of a second).
 procedure Tick is
 begin -- Tick
 -- if the timer is stopped, do not
 -- increment its value or reschedule
 -- tick for future execution.
 if Stopped then
 return;
 end if;
 -- Schedule tick to be called again in
 -- 50 milliseconds.
 Tk.After (50, "tick");
 -- Increment the timer value
 Hundredths := Hundredths + 5;
 if Hundredths >= 100 then
 Hundredths := 0;

 Seconds := Seconds + 1;
 end if;
 -- Update the timer display.
 Update;
 end Tick;

Figure 12

Figure 13 shows the Tick procedure wrapped with the necessary
interface to enable it to be a Tcl procedure. This includes the
specification of the function (to match a subprogram access type)
as well as the rules for processing and return codes. The
instantiated generic, CreateCommands, will be used to register
the function as a procedure callable from Tcl.

The actual Tick procedure is factored out of the Tick command
procedure so that it can be called directly from Ada code, not just
as a Tcl procedure. The Tick procedure is encapsulated in this
way into a Tcl command procedure so that it can be called from
the After event scheduler. This procedure is an example of the
Utilities routines shown in the Ada Program box of Figure 9.

An alternative design could use an Ada task with a delay
statement to perform the clock ticks. Since X is not reentrant,
however, some method of sequentializing calls to Tk would have
to be implemented as well.

 -- Declare a procedure, suitable for
creating
 -- a Tcl command, which will increment
the
 -- timer.
 function Tick_Command (
 ClientData : in Integer;
 Interp : in Tcl.Interp_Ptr;
 Argc : in C.Int;
 Argv : in C_Aux.Chars_Ptr_Ptr)
 return C.Int is
 begin -- Tick_Command
 Tick;
 return Tcl.OK;
 end Tick_Command;
 pragma Convention (C, Tick_Command);

Figure 13

This alternative illustrates how many system capabilities may be
solved with either Tcl- or Ada-centric methods while still taking
advantage of the platform independence of the Tk graphical user
interface system.

The Start command procedure is shown in Figure 14. It starts
the timer (if it is not already started) by calling the Tick
procedure (Figure 12). This function is made into a Tcl command
procedure so that it may serve as the Tcl command invoked when
the Start button is pressed.

 -- Declare a procedure, suitable for
creating
 -- a Tcl command, which will start the
timer
 -- if it is currently stopped. Also,
change
 -- the Stop button (currently labeled
 -- "Reset") to display "Stop."
 function Start_Command (
 ClientData : in Integer;
 Interp : in Tcl.Interp_Ptr;
 Argc : in C.Int;
 Argv : in C_Aux.Chars_Ptr_Ptr)
 return C.Int is
 begin -- Start_Command
 if Stopped then
 Stopped := False;
 Tk.Configure (Stop_Button,

 "-text Stop -command Stop");
 Tick;
 end if;
 return Tcl.OK;
 end Start_Command;
 pragma Convention (C, Start_Command);

Figure 14

Figure 15 shows the Stop command procedure. It stops
incrementing the timer and converts the Stop button to a Reset
button. This function is made into a Tcl command procedure by
adhering to the correct subprogram specification and return code
conventions. It is used as the command executed when the Stop
button is pressed.

 -- Declare a procedure, suitable for
creating
 -- a Tcl command, which will stop
 -- incrementing the timer. Also, relabel
 -- the Stop button to be a Reset button.
 function Stop_Command (
 ClientData : in Integer;
 Interp : in Tcl.Interp_Ptr;
 Argc : in C.Int;
 Argv : in C_Aux.Chars_Ptr_Ptr)
 return C.Int is
 begin -- Stop_Command
 Stopped := True;
 Tk.Configure (Stop_Button,
 "-text Reset -command Reset");
 return Tcl.OK;
 end Stop_Command;
 pragma Convention (C, Stop_Command);

Figure 15

Resetting the timer value to zero is taken care of by the Reset
procedure shown in Figure 16. This is another utility procedure
that can be called from the Reset Tcl command procedure as
well as from other Ada procedures. Restting the timer with this
procedure also updates the screen to reflect the new timer value.

 -- Reset the timer's value to 0.0 and
update
 -- the display.
 procedure Reset is
 begin -- Reset
 Seconds := 0;
 Hundredths := 0;
 Stopped := True;
 Update;
 end Reset;

Figure 16

Figure 17 shows the Reset procedure encapsulated in the
interface necessary to make it into a Tcl callable command
procedure. Reset_Command will be called whenever the
Reset button is pressed. It uses the utility procedure, Reset, to
reset the timer to value 0.0 seconds.

 -- Declare a procedure, suitable for
creating
 -- a Tcl command, which will reset the
timer
 -- to 0.0 and update the display.
 function Reset_Command (
 ClientData : in Integer;
 Interp : in Tcl.Interp_Ptr;
 Argc : in C.Int;
 Argv : in C_Aux.Chars_Ptr_Ptr)
 return C.Int is
 begin -- Reset_Command
 Reset;
 return Tcl.OK;
 end Reset_Command;
 pragma Convention (C, Reset_Command);

Figure 17

Several important operations are shown in the code in Figure 18.
The first three lines of code create a Tcl interpreter and initialze

Tcl and Tk. These correspond to the “Create Interpreter” and
“Initialize Tcl and Tk” boxes of Figure 9. There is no equivalent
code in the Tcl/Tk version of the timer program although they are
a critical part of the Tcl and Tk C public library interfaces. These
lines would be required in a C version of the timer as well in this
Ada version. The C interface to Tcl/Tk requires these calls in
order to provide the flexibility (not available in Tcl script code) of
creating and using several Tcl interpreters. A Tcl interpreter
preserves the execution state of a Tcl script, including commands
implemented in C or Ada.

begin -- Timer

 -- Create one Tcl interpreter and
initialize
 -- Tcl and Tk.
 Interp := Tcl.CreateInterp;
 Result := Tcl.Init (Interp);
 Result := Tk.Init (Interp);

 -- Create several new Tcl commands to
call
 -- Ada subprograms.
 CreateCommands.CreateCommand (Interp,
 "tick", Tick_Command'access, 0,
NULL);
 CreateCommands.CreateCommand (Interp,
 "Start", Start_Command'access, 0,
NULL);
 CreateCommands.CreateCommand (Interp,
 "Stop", Stop_Command'access, 0,
NULL);
 CreateCommands.CreateCommand (Interp,
 "Reset", Reset_Command'access, 0,
NULL);

 -- Set both Tcl and Tk contexts so that
 -- we may use shortcut Tk calls that
require
 -- reference to the interpreter.
 Tcl.Set_Context (Interp);
 Tk.Set_Context (Interp);

Figure 18

The next section of Figure 18 consists of four calls to
CreateCommand to register Ada subprograms as Tcl command
procedures. This must be done in the context of a specific Tcl
interpreter and each procedure must be given a unique command
name. Thereafter, whenever this name is referenced in the
specified interpreter as a command, the corresponding Ada
procedure is called by the Tcl interpreter. The interpreter parses
the arguments of the command and passes them to the Ada
subprogram via the Argv argument shown in each of the
subprogram declarations (Figures 13, 14, 15, and 17).

The last two lines of code have no equivalent in either Tcl script
code or in the Tcl Library. They were added as part of the Ada
“thick” binding to Tcl and Tk. The purpose of these is to provide
a shortcut to calling Tk procedures which require an interpreter
argument. The Widget tagged type, upon which all Ada Tk
widget types are based, contains a reference to the interpreter so
that calls which include a widget argument need not also specify
an interpreter. Other calls in Tk require an interpreter argument
but do not require a widget argument. Setting the context
interpreter for Tcl and Tk allows the programmer a shortcut for
specifying the interpreter. Appendix B shows that there are

several subprograms available in the Tk Ada interface which
allow the programmer to set and get the context interpreter.

Figure 19 presents the code which creates the three subwindows
to display the timer value and to start, stop, and reset the timer.
For each widget, we specify its name and several attributes which
control its appearance and location in the main Tk window. For
the two button widgets, we also specify the Tcl command
procedure to be called when the button is invoked. Recall that
these procedures are actually Ada functions which were registered
in Figure 18 to act as Tcl command procedures.

 -- Create and pack the counter text
widget
 Counter := Tk.Create (".counter",
 "-text 0.00 -relief raised -width
10");
 Tk.Pack (Counter, "-side bottom -fill
both");

 -- Create and pack the Start button
 Start_Button := Tk.Create (".start",
 "-text Start -command Start");
 Tk.Pack (Start_Button,
 "-side left -fill both -expand yes");

 -- Create and pack the Stop button
 Stop_Button := Tk.Create (".stop",
 "-text Reset -command Reset");
 Tk.Pack (Stop_Button,
 "-side left -fill both -expand yes");

Figure 19

Figure 20 completes the Ada version of the timer program. Two
statements bind keys to event sequences. Both the Control-C and
Control-Q keys will destroy the main Tk window, then exit the
program. It is not shown here, but if any clean-up were needed,
we could have coded another Ada subprogram as a Tcl command
procedure and called it from within the Bind script action
argument. Appendix B shows that the Tk package also supports
calls to bind to any widget as well as to destroy a binding.

 -- Bind ^C and ^Q keys to exit
 Tk.Bind_to_Main_Window (Interp,
 "<Control-c>", "{destroy .;exit}");
 Tk.Bind_to_Main_Window (Interp,
 "<Control-q>", "{destroy .;exit}");

 -- Loop inside Tk, waiting for commands
to
 -- execute. When there are no windows
left,
 -- Tk.MainLoop returns and we exit.

 Tk.MainLoop;

end Timer;

Figure 20

Notice that the Reset procedure is not called in the Ada version
of the timer program as it is in the Tcl version (Figure 8). Since
the variables were already initialized in their declarations and the
timer value of 0.0 was already displayed (in the creation of
.counter label widget in Figure 19), this code is not necessary
in the Ada version. This takes advantage of improved reliability

offered by Ada in variable initialization during elaboration.
References to uninitialized variables is a very common problem in
development of Tcl script code.

Finally, the Ada version explicitly turns over control to the Tk
event loop handler. This is done implicitly in the Tcl version
when the Tcl script interpreter encounters the end of the script
file.

Notice how easy it is to mix Ada code with Tcl code. For
example, the timer value is maintained in Ada variables,
Seconds and Hundredths, not Tcl variables. Figure 12
shows the Tick procedure which updates the time with Ada
rather than Tcl statements.

The timer program example is not CPU-intensive or a very
complex application. In a “real” application, preference for use of
Ada over Tcl where possible can yield much of the benefits of
program reliability and efficiency for which Ada was designed [3]
and for which Tcl is not well known. With the addition of Tcl/Tk
through the TASH binding, application development can benefit
from the use of a platform-independent graphical user interface
toolkit as well as many other Tcl features.

Major Design Decisions
Several major design decisions were made while developing these
bindings. These decisions are summarized here and described in
more detail in the following sections.

• Whether to translate the Tk C Library interface directly or
provide a higher level binding to Tk,

• Whether to use Tcl.Eval to execute Tk commands or to
create interfaces to the Tk commands,

• Whether to use object-oriented techniques,

• Whether to use child library units or one single package,

• Whether to provide Tk widget attributes as strings or
enumeration types.

A “Thick” Binding
The Tcl binding described in [8] is an enhanced translation of the
Tcl C Library as represented in the header file, tcl.h. The
enhancements increase the “thickness” of the binding by adding
subprograms which use standard Ada data types and exception
handling to the primitive C functions.

In addition, translation of every Tcl command procedure to an
Ada-callable function was considered for inclusion in the binding.

This was not done in the first release because the public interface
to the Tcl system was considered adequate to satisfy the
immediate goals of the Ada Tcl binding, that is, to allow a Tcl
program to use Ada in place of C for defining new Tcl command
procedures and to make the Tcl library functions available to an
Ada program.

Some Tcl command procedures will never need to be
implemented in the Ada binding. For example, conditional and
loop statements are not needed since they are done much more
effectively in Ada. The remaining commands that do not have
direct representation in the Tcl library functions can, for now, be
easily implemented with calls to Tcl.Eval. List processing
commands, such as lindex and linsert, are examples. This
was done in the intial release to speed development. Future work

is planned in this area to provide a complete interface without
having to resort to Tcl.Eval.

The opposite approach has been taken with the Tk binding. The
primary purpose of the Tk C Library is to allow creation of new
widgets. Although important, this was not considered as valuable
for the first implemented version of the Ada interface as the
ability to utilize the predefined widgets, pack them into windows,
and provide for user interaction. Very few of the Tk command
procedures to perform these functions are represented in the Tk C
Library interface. So, the Ada binding implements the Tk
command procedures rather than facilities of the tk.h header
file.

Several of the tk.h functions, such as Tk_Init, Tk_Main,
Tk_MainLoop, are essential to getting a Tk program to operate
and so are included in the binding.

Why not use Tcl.Eval?
But, why not allow the Ada programmer to create Tk windows by
simply calling Tcl.Eval? As long as the Tk library is linked
with the Ada program and the Tk initialization procedures are
called, this works quite effectively.

One reason for providing the procedures is that, where useful,
multiple Tcl interpreters can be used. Each window must be
created in the context of a Tcl interpreter. Multiple interpreters
can be created with the Tcl binding, although one will be
adequate for most situations.

Another reason is that window path names are often stored in
variables. This can make the code cleaner since path names often
get very long. Even though this implementation requires path
name variables to remain strings, it is more efficient to store them
in Ada variables than in Tcl variables. Use of Tcl variables
would require a hash table lookup to find the variable each time it
is referenced in a Tcl.Eval call.

So, primarily to enhance efficiency, it was decided to provide an
Ada interface to each Tk command procedure rather than rely
exclusively on Tcl.Eval.

Use of Object-Oriented Techniques
The X Window System has been promoted as an object-oriented
system in spite of the fact that it is implemented in C, a language
which is neither object-oriented or even object-based. Heller [2]
writes that

XView is an object-oriented toolkit. XView objects
can be considered building blocks from which the user
interface of the application is assembled. Each piece
can be considered an object from a particular package.

Lately, user interface toolkits, such as Fresco [9], have been
implemented which provide a true object-oriented interface to the
X Window System.

Tk, however, is not an object-oriented toolkit. The first version
of this Ada binding was not object-oriented. This was done
primarily because Tcl/Tk itself is not object-oriented. In spite of
this, the current version of the Ada binding to Tk uses tagged
types to implement the screen widget types. It also takes
advantage of inheritance in several places to develop the widget
class hierarchy. Figure 21 shows the widget hierarchy as
implemented in the Tk interface in Appendix B.

The decision was made to use object-oriented techniques for the
Ada binding to Tk primarily because this is intended to be a
“thick” binding to make a user interface toolkit available to Ada
programmers and most newly developed toolkits with which this
toolkit might “compete” are using object-oriented techniques.

Widget

Frame

MessageLabelTopLevel Button

RadioButton

Figure 21

Use of Child Library Units
Early versions of this Tk binding used a separate child library
package for each Tk command. Originally, it was thought that
this would reduce complexity by allowing the programmer to
focus on only those commands necessary for a particular job.

However, this was changed for several reasons:

• A programmer will typically learn Tk from a reference such as
[6] rather than from reading the Ada Tk binding. Therefore,
separating the commands will not necessarily reduce the
complexity of choosing the right widget for each situation. On
the contrary, it might increase it.

• Since this is a binding to a C library, separate child packages
will not, by itself, reduce the final object size.

• Real programs typically use many different types of widgets.
The need to “with” a package for each will turn out to be a
burden rather than helpful.

Therefore, the current version of this binding is encapsulated in
one single package.

Use of Enumeration Types for Widget
Attributes
In many graphical user interfaces, attributes are used to control
the appearance and behaviour of the widgets. This seems like a
natural application of Ada enumeration types. Use of
enumeration types may reduce the chance of error in setting
attributes by limiting what attributes may be used in each tk
command. This would allow compile-time checking to catch
attribute misuse.

However, this usage was decided against because:

• It was judged that veteran Tk programmers would dislike
converting existing and new code to this method and first-time
Tk programmers are likely to learn the attributes from Tk
reference material, not this binding. In either case, the gain
was not considered adequate to radically change normal Tk
attribute usage.

• Although arbitrary lists of arguments (such as attributes) can be
constructed in Ada, their usage is generally very cumbersome.
The added complexity of creating such lists was considered to
outweigh the benefits of the use of enumeration types.

• Since this is a binding, it must be updated each time a new
version of Tk is introduced. The maintenance task of keeping
up with the addition of new widget attributes was considered to
be potentially very burdensome in comparison to the benefits
of the use of enumeration types.

Therefore, this binding retains the familiar Tk style and provides
for a string argument of arbitrary length to be used to set
attributes.

Future plans
Future development on TASH will include upgrading it to Tcl 7.5
and Tk 4.1 and completing the addition of remaining Tcl and Tk
command procedures so that the are directly callable from Ada.

Trademarks and Copyrights
The Tcl/Tk source code is copyrighted by the Regents of the
University of California and Sun Microsystems, Inc.

The X Window System is a trademark of the Massachusetts
Institute of Technology.

XView is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company
Limited.

Windows and Windows 95 are trademarks of Microsoft, Inc.

References4

1. Harnack, Andrew, and Gene Kleppinger. “Beyond the MLA
Handbook: Documenting Electronic Sources on the
Internet.” 10 June, 1996. <http://falcon.eku.edu/honors/
beyond-mla> (4 Aug 1996).

2. Heller, Dan. XView Programming Manual. O’Reily &
Associates, Sebastopol, CA, 1990.

3. Intermetrics. Ada Reference Manual. Intermetrics,
Cambridge, MA, 1995.

4. McKay, Ross. “The Platform-Independent Graphical User
Interface Frequently Asked Questions”. 29 May 1996.
<http://www.zeta.org.au/~rosko/pigui.htm> (5 Aug 1996).

5. New York University. “The GNAT Project.” 1 July 1995.
<http://cs.nyu.edu/cs/projects/gnat> (5 Aug 1996).

6. Ousterhout, John. Tcl and the Tk Toolkit. Addison-Wesley,
Reading, MA, 1994.

7. Ousterhout, John. “The Tcl/Tk Project at Sun
Microsystems.” 16 May 1996. <http://www.smli.com/
research/tcl> (5 Aug 1996).

4Referenced documents which reside on the Internet are included
in the references in the style recommended in [1].

8. Westley, Terry. “TASH: Tcl Ada SHell, An Ada/Tcl
Binding.” ACM SIGAda Ada Letters, 1996.

9. X Consortium. “Fresco -- A Fresh Approach to User
Interface Systems.” 25 July 1996. <http://www.faslab.
com/fresco/HomePage.html (5 Aug 1996).

Appendix A -- How to get and install
TASH
Get TASH via anonymous ftp from URL
ftp://ocsystems.com/xada/tash/tash<version-
number>.tar.gz, where <version-number> denotes a version
number, e.g. 2.1b1.

Uncompress and extract it from the tar archive:

gzcat tash2.1b1.tar.gz | tar xvf -

Then, follow these steps to build and test it:

1. Modify the file, Makefile.common in the tash2.1b1
directory to reference the correct location of your local Tcl
and Tk C libraries, libtcl.a and libtk.a.

2. Type make in the tash2.1b1 directory. This executes a
make in each of three subdirectories to build the Ada/Tcl
interface, the Tcl Ada Shell program, tash, the freq demo
program, and a test program.

3. Test that the system was correctly built by changing to the
tash2.1b1/test directory and executing make test.

4. Try the freq demo by executing make test in the
tash2.1b1/demos directory. To compare the execution
time of Tcl versus Ada freq, execute make time.

Appendix B -- The Tk Package
This is a sample specification of the Tk package. This
specification is preliminary and incomplete. It does not include
many of the Tk widgets. It serves primarily to show the intent
and design of the completed interface to Tk.

--

--
-- tk.ads --
--
-- This is an Ada 95 interface to Tk
-- version 4.1a2.
--
-- Copyright (c) 1987-1994
-- The Regents of the University of
California.
--
-- Copyright (c) 1994-1995
-- Sun Microsystems, Inc.
--
-- Copyright (c) 1995-1996
-- Terry J. Westley
--
-- See the file "license.terms" for
information
-- on usage and redistribution of this file,
-- and for a DISCLAIMER OF ALL WARRANTIES.
--
--

with C_Aux;
with Interfaces.C.Strings;
with Tcl;

package Tk is

 Tk_Version : constant String := "4.1a2";
 Ada_Version : constant String := "2.1b1";

 package C renames Interfaces.C;

 --
 -- The Widget data type, parent of all
 -- objects displayed on the screen.
 --
 -- It is abstract because it is just a
 -- convenience for creating a Widget
 -- class and for creating non-abstract
 -- derived widget types. Since there
 -- is no such data type in Tk, we make
 -- it abstract so that no instance of
 -- type Widget may be created.
 --

 type Widget is abstract tagged private;

 --

 -- Widget path name constructors
 --

 function Widget_Image (
 Win : in Widget'Class) return String;
 -- Returns the string name of Win.

 function "&" (
 Left : in Widget'Class;
 Right : in Widget'Class) return
String;
 function "&" (
 Left : in Widget'Class;
 Right : in String) return String;
 function "&" (
 Left : in String;
 Right : in Widget'Class) return
String;
 -- Concatenates and returns the string
 -- names of Left and Right. Does not
 -- insert the separating dot.

 pragma Inline (Widget_Image, "&");

 procedure Set_Context (
 Interp : in Tcl.Interp_Ptr);
 -- Sets the interpreter context for all
Tk
 -- calls which do not include either an
 -- Interp or Widget parameter.

 function Get_Context return
Tcl.Interp_Ptr;
 -- Gets the current interpreter context.

 function Get_Interp (
 Widgt : in Widget'Class)
 return Tcl.Interp_Ptr;
 -- Gets the interpreter of the specified
 -- Widget.

 --
 -- Widget constructors
 --

 function Create (
 pathName : in String;
 options : in String := "")
 return Widget is abstract;
 -- Creates a new widget in the
"contextual"
 -- interpreter. Options may be specified
 -- via the "options" parameter or the
option
 -- database to configure the widget.

 function Create (
 Interp : in Tcl.Interp_Ptr;
 pathName : in String;
 options : in String := "")

 return Widget is abstract;
 -- Creates a new widget in the specified
 -- interpreter. Options may be specified
 -- via the "options" parameter or the
option
 -- database to configure the widget.

 --
 -- Widget destructor
 --

 procedure Destroy (
 Widgt : in out Widget'Class);
 -- Destroys a widget.

 --
 -- Widget configuration query and modify
 --

 function cget (
 Widgt : in Widget'Class;
 option : in String) return String;
 -- Returns the current value of the
 -- specified configuration option.

 function configure (
 Widgt : in Widget'Class;
 options : in String := "") return
String;
 procedure configure (
 Widgt : in Widget'Class;
 options : in String := "");
 -- Queries or modifies the configuration
 -- options. If options is an empty
string,
 -- returns a list of all available
options
 -- for the widget.

 --
 -- Bind associates a Tcl script with an
 -- event. The script is executed when
 -- the event occurs.
 --

 procedure Bind (
 Widgt : in Widget'class;
 Sequence : in String;
 Script : in String);
 -- Associates Tcl script Script with the
 -- event Sequence.

 procedure Bind (
 Widgt : in Widget'class;

 Sequence : in String);
 function Bind (
 Widgt : in Widget'class;
 Sequence : in String) return String;
 -- Disassociates the binding from the
event
 -- Sequence.

 procedure Bind_to_Main_Window (
 Interp : in Tcl.Interp_Ptr;
 Sequence : in String;
 Script : in String);
 -- Associates Tcl script Script with the
 -- event Sequence in the main window.

 procedure Bind_to_Main_Window (
 Interp : in Tcl.Interp_Ptr;
 Sequence : in String);
 function Bind_to_Main_Window (
 Interp : in Tcl.Interp_Ptr;
 Sequence : in String) return String;
 -- Disassociates the binding from the
event
 -- Sequence in the main window.

 --
 -- Frame widget
 --
 -- This is a non-abstract type derived
 -- directly from Widget. Each of the
 -- derived widgets redefines the Create
 -- subprogram in order to create the
 -- correct type of widget.
 --

 type Frame is new Widget with private;

 function Create (
 pathName : in String;
 options : in String := "") return
Frame;
 -- Creates a new widget in the
"contextual"
 -- interpreter and makes it into a frame
 -- widget. Options may be specified via
the
 -- "options" parameter or the option
database
 -- to configure the widget.

 function Create (
 Interp : in Tcl.Interp_Ptr;
 pathName : in String;
 options : in String := "") return
Frame;
 -- Creates a new widget in the specified
 -- interpreter and makes it into a frame
 -- widget. Options may be specified via
the
 -- "options" parameter or the option
database
 -- to configure the widget.

 --
 -- Toplevel widget
 --

 type Toplevel is new Frame with private;

 function Create (
 pathName : in String;
 options : in String := "")
 return Toplevel;
 -- Creates a new widget in the
"contextual"
 -- interpreter and makes it into a
toplevel
 -- widget. Options may be specified via
the
 -- "options" parameter or the option
database
 -- to configure the widget.

 function Create (
 Interp : in Tcl.Interp_Ptr;
 pathName : in String;
 options : in String := "")
 return Toplevel;
 -- Creates a new widget in the specified
 -- interpreter and makes it into a
toplevel
 -- widget. Options may be specified via
the
 -- "options" parameter or the option
database
 -- to configure the widget.

 --
 -- Label widget
 --

 type Label is new Frame with private;

 function Create (
 pathName : in String;
 options : in String := "") return
Label;
 -- Creates a new widget in the
"contextual"
 -- interpreter and makes it into a label
 -- widget. Options may be specified via
the
 -- "options" parameter or the option
database
 -- to configure the widget.

 function Create (
 Interp : in Tcl.Interp_Ptr;
 pathName : in String;
 options : in String := "") return

Label;
 -- Creates a new widget in the specified
 -- interpreter and makes it into a label
 -- widget. Options may be specified via
the
 -- "options" parameter or the option
database
 -- to configure the widget.

 --
 -- Message widget
 --

 type Message is new Frame with private;

 function Create (
 pathName : in String;
 options : in String := "")
 return Message;
 -- Creates a new widget in the
"contextual"
 -- interpreter and makes it into a
message
 -- widget. Options may be specified via
the
 -- "options" parameter or the option
database
 -- to configure the widget.

 function Create (
 Interp : in Tcl.Interp_Ptr;
 pathName : in String;
 options : in String := "")
 return Message;
 -- Creates a new widget in the specified
 -- interpreter and makes it into a
message
 -- widget. Options may be specified via
the
 -- "options" parameter or the option
database
 -- to configure the widget.

 --
 -- Button widget
 --

 type Button is new Frame with private;

 function Create (
 pathName : in String;
 options : in String := "") return
Button;
 -- Creates a new widget in the
"contextual"
 -- interpreter and makes it into a button
 -- widget. Options may be specified via
the

 -- "options" parameter or the option
database
 -- to configure the widget.

 function Create (
 Interp : in Tcl.Interp_Ptr;
 pathName : in String;
 options : in String := "") return
Button;
 -- Creates a new widget in the specified
 -- interpreter and makes it into a button
 -- widget. Options may be specified via
the
 -- "options" parameter or the option
database
 -- to configure the widget.

 procedure Flash (
 Buttn : in Button'class);
 -- Flash the button.

 function Invoke (
 Buttn : in Button'class;
 options : in String := "") return
String;
 -- Invoke the Tcl command associated with
 -- the button.

 --
 -- RadioButton widget
 --

 type RadioButton is new Button with
private;

 function Create (
 pathName : in String;
 options : in String := "")
 return Radiobutton;
 -- Creates a new widget in the
"contextual"
 -- interpreter and makes it into a
 -- radiobutton widget. Options may be
 -- specified via the "options" parameter
or
 -- the option database to configure the
 -- widget.

 function Create (
 Interp : in Tcl.Interp_Ptr;
 pathName : in String;
 options : in String := "")
 return Radiobutton;
 -- Creates a new widget in the specified
 -- interpreter and makes it into a
 -- radiobutton widget. Options may be
 -- specified via the "options" parameter
or
 -- the option database to configure the
 -- widget.

 procedure Deselect (

 Buttn : in RadioButton);
 -- Deselect the button.

 procedure Tk_Select (
 Buttn : in RadioButton);
 -- Select the button.

 procedure Toggle (
 Buttn : in RadioButton);
 -- Toggle the button.

 --
 -- After commands
 --
 -- These commands delay execution and
 -- schedule (and unschedule) future
 -- execution of Tcl commands.
 --

 procedure After (
 Ms : in Natural);
 -- Sleeps for Ms milliseconds in the
 -- "contextual" interpreter.

 procedure After (
 Interp : in Tcl.Interp_Ptr;
 Ms : in Natural);
 -- Sleeps for Ms milliseconds in the
 -- specified interpreter.

 function After (
 Ms : in Natural;
 Script : in String) return String;
 procedure After (
 Ms : in Natural;
 Script : in String);
 -- Arranges for the Tcl Script to be
 -- executed after Ms milliseconds in the
 -- "contextual" interpreter. The
function
 -- returns an identifier suitable for
 -- canceling the command.

 function After (
 Interp : in Tcl.Interp_Ptr;
 Ms : in Natural;
 Script : in String) return String;
 procedure After (
 Interp : in Tcl.Interp_Ptr;
 Ms : in Natural;
 Script : in String);
 -- Arranges for the Tcl Script to be
 -- executed after Ms milliseconds in the
 -- specified interpreter. The function
 -- returns an identifier suitable for
 -- canceling the command.

 procedure Cancel (
 id_or_script : in String);
 -- Cancels the execution of a delayed
 -- command in the "contextual"
interpreter.

 procedure Cancel (
 Interp : in Tcl.Interp_Ptr;
 id_or_script : in String);
 -- Cancels the execution of a delayed
 -- command in the specified interpreter.

 function Idle (
 Script : in String) return String;
 procedure Idle (
 Script : in String);
 -- Arranges for the Tcl Script to be
 -- executed later as an idle handler in
the
 -- "contextual" interpreter. The
function
 -- returns an identifier suitable
 -- for canceling the command.

 function Idle (
 Interp : in Tcl.Interp_Ptr;
 Script : in String) return String;
 procedure Idle (
 Interp : in Tcl.Interp_Ptr;
 Script : in String);
 -- Arranges for the Tcl Script to be
 -- executed later as an idle handler in
the
 -- specified interpreter. The function
 -- returns an identifier suitable for
 -- canceling the command.

 function Info (
 id : in String := "") return
String;
 -- Returns information about existing
event
 -- handlers in the "contextual"
interpreter.

 function Info (
 Interp : in Tcl.Interp_Ptr;
 id : in String := "") return
String;
 -- Returns information about existing
event
 -- handlers in the "contextual"
interpreter.

 --
 -- Pack commands
 --
 -- These commands provide for packing
 -- widgets within other widgets and
 -- therefore rendering them to the
screen.
 --

 procedure Pack (
 Slave : in Widget'Class;
 Options : in String);
 procedure Pack_Configure (

 Slave : in Widget'Class;
 Options : in String);
 -- Tells the packer how to configure the
 -- specified Slave window.

 procedure Pack_Forget (
 Slave : in Widget'Class);
 -- Removes the Slave window from the
 -- packing list for its master and unmaps
 -- their windows.

 function Pack_Info (
 Slave : in Widget'Class) return
String;
 -- Returns a list whose elements are the
 -- current configuration state of the
 -- specified Slave window.

 procedure Pack_Propogate (
 Master : in Widget'Class;
 State : in Boolean);
 -- Enables or disables propogation for
the
 -- specified Master window.

 function Pack_Propogate (
 Master : in Widget'Class) return
Boolean;
 -- Returns state of propogation in the
 -- specified Master window.

 function Pack_Slaves (
 Master : in Widget'Class) return
String;
 -- Returns a list of slaves in the
packing
 -- order of the specified Master window.

 --
 -- tk.h functions
 --
 -- This is a "thin" binding to tk.h
 -- functions.
 --

 function Init (
 interp : in Tcl.Interp_Ptr)
 return C.Int;
 pragma Import (C, Init,

 "Tk_Init");

 procedure Main (
 argc : in C.Int;
 argv : in
C_Aux.Chars_Ptr_Ptr;
 appInitProc : in
Tcl.AppInitProc_Ptr);
 pragma Import (C, Main,

 "Tk_Main");

 procedure DoOneEvent (
 flags : in C.Int);

 pragma Import (C, DoOneEvent,
 "Tk_DoOneEvent");

 procedure MainLoop;
 pragma Import (C, MainLoop,
"Tk_MainLoop");

 function GetNumMainWidgets return C.Int;
 pragma Import (C, GetNumMainWidgets,

 "Tk_GetNumMainWidgets");

private

 type Widget is abstract tagged
 record
 Name : C.Strings.Chars_Ptr;

 Interp : Tcl.Interp_Ptr;
 end record;

 Context : Tcl.Interp_Ptr;

 procedure Execute_Widget_Command (
 Widgt : in Widget'Class;
 command : in String;
 options : in String := "");

 type Frame is new Widget
 with null record;

 type Toplevel is new Frame
 with null record;

 type Label is new Frame
 with null record;

 type Message is new Frame
 with null record;

 type Button is new Frame
 with null record;

 type RadioButton is new Button
 with null record;

end Tk;

